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SUMMARY 

Leontovich has proved that the triangular equilibrium 

positions in the planar Restricted Problem of Three Bodies are 

stable for almost all admissible mass ratios. It is shown here 

that the set of exceptional mass ratios for which stability 

remains to be proved or invalidated contains only one point 

besides the critical mass ratios of order two and three. 



1.  INTRODUCTION 

We consider a conservative dynamical system with two degrees of 

freedom defined by the equations of motion 

with the Hamiltonlan function 9£   analytic at the origin in the four 

dimensional phase space. 

Let us suppose that the origin is a position of equilibrium for the 

system. Thus, In the neighborhood of the origin, the Hamiltonlan can be 

expanded as a series 

■l*a 
3t 

n^2 

of powers of z1, z^, z-, z,, the term 31      being the homogeneous 

component of the series with degree n. 

We assume that there exists a completely canonical linear mapping 

(z1,z2,z3,z,) -► (Z, »Z-.Z-.Z.) reducing dt-    to the form 

a2 - f ^(zf+z*) + \ «.2
2(z^) 

where co, and ou are real numbers. Thus the equilibrium is said to 

be of the elliptic kind, and the numbers a)., and uu represent a set 

/ 
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of basic frequencies for the linear dynamical system described by the 

Hamlltonlan function S!^- 

Given a fixed Integer n such that n ^ 4,  let us consider the 

following hypothesis: 

(An)  ("Restricted Condition of Irrationality") — 

for all pairs  (k ,k ) of rational Integers such that 

1^1 + |k2| <.n. 

Under the condition (A ),  there exists at least one canonical n 

transformation  (Z. ,Z2,Z-,Z.) -*■  (C,,Z7,ü,~,t.)    which decomposes the 

original Hamlltonlan Into the sum 

X = XUlti;2^r^)  - X + T(n+1) (1) 

where 5f is a polynomial in the variables 

2   2 2   2 

of the form 

9£ » ü)1I1 + w2I2 + ^(AI^ + 2BI1I2 + CI2) +••• 

and where 1*     is a power series in C,» Cj» C«, C,  beginning with 

terms of degree n + 1 and convergent in the neighborhood of the origin. 

The coefficients in the polynomial 3(   do  not depend on the 

integer n nor on the manner by which the normalization transformation 
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is obtained. Thus, in particular, the determinant 

D = det(a ) 
J l<i,j<3 

whose elements are defined as follows 

ai3Ä a3i S[~±)1=l =0 
(i"1,2)' 

a33 = 0' 

is an invariant of ti ■. Hamiltonian d£    with respect to the canonical 

transformations leading to the normal decomposition (1). 

At last, let us still consider two more hypotheses: 

(A )  ("General Condition of Irrationality")—For any pair (k. »k.)  of 
00 i. Z 

rational integers,  k-co, + k-cu., f* 0. 

(B)  The determinant D is not zero. 

Arnol'd (1961) has established the following theorem.  If the 

conditions (A ) and  (B)  are verified, then on each energy manifold 
00 

5f = h    in the neighborhood of the equilibrium,  there exist invariant 

tori of quasi-periodic motions which divide the manifold.    In consequence, 

the equilibrium is stable. 

As an application of this theorem,  Leontovich  (1962) deduced that 

the triangular equilibrium positions in the planar Restricted Problem of 
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Three Bodies are stable for all permissible mass ratios but a set of 

measure zero. 

However, Moser has shown that Arnol'd's theorem Is still valid 

under the weaker conditions  (A.) and (E). 

We propose here to apply this weaker form of the theorem to the 

triangular positions of the planar Restricted Problem, In order to 

determine the mass ratios for which there Is stability. 

2.  FIRST ORDER 

In the canonical units and with respect  to the synodlcal 

barycentrlc system of Cartesian coordinates,  the planar Restricted 

Problem of Three Bodies Is described by the Lagranglan function 

£ ' j(x2+y2) + (xy-xy) + (l-y)(^- + J P^) + u(~ + J Pj)- 

For the sake of convenience, we put 

Y = 1 - 2y. 

The substitution x -> x + y/2,    y ■+ y + ^3/2    translates the origin 

of the coordinate system to the triangular equilibrium position L,. 

There we expand the Lagranglan function in power series of x and y, 

and we find (Deprit 1966) : 

^■£2+t3+^. 
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£1  = -jCx +y ) + (xy-xy) + g x + ^- yfS xy + ^ y , 

/,=7   3   3/=-2   33   2  3^3 
^3  16 YX - 16 ^ x y " 16 ^ " 16 ^ y ' 

R 37  4  25  /r- 3  , 123 2 2 . 45  /T-  3   3  4 
^4 = -128X - 32 Y-^xy + —x y r ^ Y/3 xy +128 7. 

Thus to the first order, the equations of motion are to be derived 

from £~.     They are 

* - 2y - | x - | Y^3y » 0. 

y + 2x - | Y^3 x - I y - 0. 

To them belongs the characteristic polynomial 

4 ä 2 f 27 ,.  2N s + s + -^ (1-Y )• 

Its roots are distinct and all purely imaginary if and only if 

y(l-y) < 1/27. 

In order that this be true, the mass ratio p must be strictly smaller 

than Routh's critical mass ratio 

1,,  1 yl < 2(1  9 ^ ' 0-038520896... 

in which case,   the four characteristic roots at  the equilibrium    L,     are 

as follows: 
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Sl " ^wl*   82 * ^U)2,   S3 " "^^i»   8A " "^7 

where the real numbers w, and (j« are characterized unambiguously 

by the set of relations 

0 < a)2 < l/SI < a)1 < 1, (2) 

2   2 
W. + (Jü? = 1, 

2 2       2 
löw^ü). = 27(1-Y ) . 

These classical results define the stability and the periods of the 

linear oscillations about the equilibrium L,  omitting the nonlinear 

terms In the Lagranglan function. What Interests us more now Is» 

however, to Investigate the perturbations In the coordinates x,y and 

In the basic frequencies arising from the presence of quadratic and 

cubic terms on the right-hand members of equations. In order to do so, 

let us hereafter put, for the sake of simplicity. 

.   ,.2 1/9a/2  n   _ 2.1/2 
k - (2^-1/2)   = (l-2a)2)   , 

l±  = (9+4^)1/2       (1-1,2), 

mi = 1 + 4u)* (1-1,2), 

ni' 9 -  4u)2 (1-1.2). 

Then, following Breakwell and Pringle (1966), we Introduce the symplectic 

matrix 



-7- 

^ - (a,,) 
2  lli.JlA 

whose elements are defined as follows: 

a11 = 0, a21 - -4^/k^, 

a12 = 0» a22 = -4ü)2/k£2, 

a13 = Äi/2kUii' a23 " -3Y'/3/2U1w1, 

a14 = -Ä2/2ku)2, a24 " 3Y»/3/2U2W2» 

a31 " -m1w1/2k£^, a, - Sy/Iü),/2kll1, 

a32 * -ni2li)2/2kÄ2' a42 " 3>',/3w2/2k^2, 

a33 "  3Y,/3/2kJl1a)1, a43 - n1/2k£1w1, 

a34 - -3Y'/3/2kJl2a)2, a^ - -^/ZW^. 

Accordingly the  transformation from the phase space    (x,y,p   ,p )     into 
x y 

the phase space product of the angle-coordinates  (()), .(ju) and of the two 

action momenta  (I-,!.), as it is defined by the equations 

X " a13Pl + a14P2' 

y " a21Ql + a22Q2 + a23Pl + a24P2» 

px ' a31Ql + a32Q2 + a33Pl + a3.P2' 

py " a41Ql + a42Q2 + a43Pl + a44P2' 

wherein 
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1/2 
Q1 -  (2Ii/ü,i)

±/  sin <^, (1-1,2) 

Pi '  (2I^i>1/2cos *i* (1-1,2) 

Is completely canonical.    Moreover,  in the new phase variables,  the 

second order part of the Hamiltonian assumes the normal form 

3£2 = UJ^ - w2I2, 

and Its general solution Is 

(j), = w.t + const., 

I = const. 
(1=1,2) 

If the oscillations about L, were exactly linear, the integrals of 

motion would, in fact, be represented by the above relations and the 

corresponding orbits would be given by the formulae 

H    Tl/2 *2    Tl/2 
X   =  —   I COS   (().. I-      COS    ())_ 

k/2a)1    l ±      k*^" 

3Y/3      Tl/2 ,     .    3Y^3      T1/2 
=  -  ' I-      COS   (j),   + —'   Ij      COS   <|)9 

kil1/2a)1    1 U2^2^ 

hl/^l Tl/2 ,     A        4/^    1/2 4    A 

TIT
1

! 
sin *i "nr^ sin*2- 
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3. SECOND ORDER NORMALIZATION 

J. Henrard (1966) has shown how to carry on In a straightforward 

manner Birkhoff's normalization without introducing generating functions 

and without inverting power series. 

The coordinates  (x,y) are to be expanded in double d'Alembert 

series: 

* - 1  B^0.    y - 1 f >: = Z B
n .   y = Z. B:^ (3) 

n>l n>l 

where the homogeneous components    x      and    y      of degree    n    are of the 

form 

\  I(n-m)/2Im/2 \      [c       cosCp^.+q^J+S       sinCp^^q^J].  (4) 
^  1      2  / i—' x  n-m,m,p,q  vrTl MT2  n-m,m,p,q   KY1 ^T2 ■' cm<n (p>q) ' >r.T 0<m<n 

In (4) the double summation o'er the indices p and q is subject to the 

following conventions: 

a) p runs over those integers in the interval 0 f. P £ n-m 

that have the same parity as n-m; 

b) q runs over those integers in the interval -m <_ q «^ m 

that have the same parity as  m. 

In the developments (3), the quantities I,  and I- are to be taken as 

constants of integration, while $.     and (ju are to be determined as linear 

functions of the time in such a way that 

^i= ^i + 2 ww 
n>l 

^2 = -w2 + 2 82n(Il'I2) n>l 
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where, for any n ^ 1,  f.  and g«  are homogeneous polynomials of 

degree n in the actions I. and I?.  The canonical character of the 

transformation will be ensured formally by requesting that the double 

d'Alembert series (3) satisfy the identities 

(x;y) - 0, 

(x;x) - 1,   (y;x) » 0, 

(x;y) = 0.   (y;y) = 1.    (x,y) = 0 

where the left-hand members stand for the Poisson bracket with respect 

to the phase variables  ((j) .(j)-,! ,I_),  thus for Instance 

/ . N   9x  8y   3x  9v   9x  9y   3x 3y 
(X;y; " 3^ 3I1 " 3^ 3$^^       dt2  3I2 ~ 3I2 3((.2 ' 

and where x,y should be taken as the composition derivatives 

•    •   d X    •   oX 
X = *1 3^ + *2 3^ ' 

i 9y . i 9y 

In this way,  a Birkhoff normalizing transformation can be 

constructed entirely by the method of undetermined coefficients. 

As it is shown elsewhere  (Deprit et at 1966b),  the homogeneous 

components of order    2     in the coordinates    x    and    y    are solutions 

of  the partial differential equations 
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K ^7-^2 ^7)    -4jB2      " [Tl  9^      ^2  3^)   +4 Y/3JB2 X2, 

K^^24i)2-l]^1 + [2K^^2ät)-i^]B2'0"V 

The right-hand members are the homogeneous components of order    2    obtained 

on substituting  in the derivatives 

d£2      21      2      3   xr 33      2 
TT = 16 YX    - 8  ^ Xy " 16 ^  ' 

9Ä 

(5) 

3    /T   2      33 9/5-2 
9y   -16 ^x - T ^y - la ^ y 

the first order expressions already obtained for x and y.  From 

eliminating in turn B«'^ and B2'  from the system (5), we arrive at 

the partial differential system 

Wl'0  = *2' 

A1A2B^
1 - *2 

where the differential operators on the  left-hand members are 

2 
9    \ 2 A        / 9 d    \     J     2 

Al=h9^-W2^7)     +U1 

A2'h 9^" u2  9^2 )    +u2 

and the functions on the right-hand members are to be constructed as 

follows: 



-12- 

*2 -[K  a*!' w2^)     - I]*! + l2^!^- "2j^)+ h^ Y2. 

h' .(Ul i^ " u2 ifj )     ' 4 ] Y2 * [2(wl 7^ " W2  Hj) " I Y/I] 

It  is quite essential to remark that no term in    cos  <j), ,   sin $.     or 

cos  (Ju,  sin <j)-    appears in    X«    and    Y»,    so that    $„     and    f-    are also 

free of such terms.    Hence the homogeneous components    B^'   ,   B  '      can be 

obtained  in a straightforward manner,  on applying the differentiation 

rules: 

A1A2  cosCp^ + q<t>2)   =  A     q   cosCp^ + q^) 

A1A2  sinCp^ + q(j)2)  = A        sinCp^ + q^) 

where 

2 2       2 2 
A =   [(JJ1 -   (p(Jü1-qa)2)   ] [co2   -   (po^-qo^)   ] 

Since we assumed that the irrationality condition  (A_)  is verified, 

none of the divisors A_ n. A.. ., A1 _1 , A» _ is zero.  Notice that, in 

view of the inequalities (2), the condition (A»)  is fulfilled if 

and only if, in the interval 0 < y < y, ,  the mass ratio does not take 

the critical value 

V2  = f [1 - T'J »/1833 ] = 0.024293897... . 
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A simple sequence of algebraic manipulations leads eventually 

to the components    B  '       and    Bo'   •     It has been checked that, they 

actually transform the Hamiltonian function    3£~  = - £~    into the 

zero  function.     Both components are listed in Table  I. 
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Table I 

Homogeneous components of order 2 in the coordinates    x    and    y 

B 
1,0 B 0,1 

I..COS 2(f), 

I^cos((t)1+<|)2) 

I^cosC^-^) 

3-a.2 

3 27+91a^-4(^ 

4 .2  2 

2 2 45-44u) w +18ci) CJ 

k  ^i12    1^2 

2 2 
. 45+440). U.+ISU)^ 

k Yi^ 

I-cos 2412 
27+91^-40)2 

K  ^2  2 

I sin 2(J)1 

I^sin((})1+*2) 

I^I^sin(*1-(|.2) 

1   27-31o)^+22o)4 

12 ,2 
k o). 

1/3 

1   243+45O)
2
+74ü)J+88ü)^ 

12 k £1o>1 

^ 

.   297-1080).o)0-224o)Ja)2 

-z u — ^ 
2 r—^ 

k £ £ /!ö7ö)7 

.   297+1080), ü)--224U)?ü)
2 

-i ——^^ 
27-31o)2+22o)^ 

12        . 2 J 

k o)_ 

1   243+45'A)2+74O)2+88O)2 

12 i202 
k £2-2 

/J 

.   54-53o)?+44o)f 
1  1 1 /J 
3 2  2 

2  2 
1 54+9W.O) -44o) o)     ü)i~ai2 

3 ,2 " ~~~~ 'J 

k  V2 ^ 

1 54-90)^2-440)^^    V^ 

3        ,2 

l2si-  2*2 

k  £1Ä2 

.  54-53a)2+44o)^ 
— = =• /T 
3        22 kZC 

S^ 

18+llo)J 

2 2 k £j 

18-llü) o)2    (*).-o)2 

"3—2 7=Y 

k il1£2        ^^ 

18+1 lo) o)      ^i+^o 
-3 — • -—-— Y 

-3 

k2£1£2 

18+110): 

2  2 
k  £ 

'0)   0) 
12 
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4.  SECOND ORDER COEFFICIENTS IN THE FREQUENCIES 

The homogeneous components B '  and B«'  of the third order in 

the coordinates x and y, as well as the homogeneous polynomials f? 

and g? of the second order in the frequencies L and ^2,  satisfy the 

partial differential equations 

7   3       3 \   3] 
h 9^ - W2 3^ )  - 4 J 

-31Ri.o_r9/ _J__ 
2 3^/    4 |B3" " l2^!  3^ ' ^ 9^ )+h*]*r 

+  2f 
2 3^ 

-i- .I.« _ Bo,il _ "iw^r-^r] -28: _3_R1.0 . R0.1 
m2 H2  Bl  + Bl 

= X_, 

(6) 

K^;-W27^)  -4jB3  +[2(a)li^"(i,2?^) "4 ^J^ 

0.  3 r   3 _0,1 r _1,0"|  0 2f2 ^ fi i^ Bi + Bi J " 28: 
_3_ 0,1   1,0-1 _ 

^ 9^ B1  - B,  ! ~ U. '] 

The right-hand members are the homogeneous components of order 3 

obtained on substituting in the derivatives 

37(ir3 + £4)' ^<Jf3+^) 

the expansions obtained for the coordinates x and y up to the second 

order so far. 

As we did at the second order, we eliminate in turn B '  and B ' 

from the system (6) so that we obtain the equations 
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V^a*0 " *3 " 2f2p " ^^ 

A^B^'1 = ^ - 2f2U -  2g2V, 

where we put 

^3 

*3 " K ^ " -2 ^>    - !] X
3 

+ [2K ^7 -2 ^ + ! ^] Y3' 

"  [S i^ - w2 it?    " A]
Y

3 " [2(ü)l if^ " w2 ^  " 4 Y,/J]X3' 

„        9    f. 2   32        9W 3    „1,0      „O.lx   ,   ,, 8     L 3     /rw        3    B0,l ^ „l.OJ 
r-^IS^-^S^V   -Bi   ) + (2WII^ + äY/J)(UII,7BI    +-BI   ^ 

Q ' 3^ [(u2 TT - 4)(-w2 iT Bl      * *!    > + <-2w2 IT + 4 Y/I)(
-

W
2 IT Bl      + Bl    >] ' 

3*2 

3 [/ 2    32       3W 3    ,,0,1   .  _1,0,       ,. 3 3     /=-,,        3    „1,0      „0,1x1 u - i^ ri ^2 - 4)(wi ^ BI + BI ) - (2ui HI - 4 Y/J)(WI T^ BI - Br >]• 

3 f. 2    32       3W 3    „0,1 ^ „1,0,       .  _ 3        3     /=-,, 3    „1,0      „0,1,1 
V - Tr2 L(U)2 72 - 4)(-w2 1^ Bl      + Bi*  > -  (-2-2  3^ " 4 ^^2 J^ h      " Bl    >] 

We do not need to evaluate the components B-'  and B ' .  For 

it will be sufficient for our purpose to compute the coefficients of 

cos $., sin (fi. , cos ^ and sin (Ju in the right-hand members of the 

partial equations.  Those are the critical terms, because they belong 

to the kernels of the differential operator A, A_. Now they can be 

eliminated by a proper choice of the coefficients in the polynomials 

f2 B  f2,0Il + f052
I2' 

82 " ^.O^ + 80,2I2• 
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As a matter of fact, it turns out that the system of 16 linear equations 

in the four unknowns f« „, ^2* 82 0' 80 2 t0 which we arrived is 

consistent and yields a unique solution. We have listed it in Table II. 

Table II 

Component of fourth order in the normalized Hamiltonian 

2,0 
- A = 72 

Ji (81-696 (I+12iiJ^) 

(1-2^) (1-5^) 

f0,2  82,0 " Ö " 
I 
6 

2 2 
u), (!)„( 4 3+64(1). a),,) 

(1-2^) (1-2^) (1-5^) (l-Soj^) 

'0,2 
= C - 

1 ü)^(81-696U)2+124ü)2) 
__ ___   _ _ 

(l-2a)2) (l-5o)2) 

These results have been checked.  For the system Sun-Jupiter 

(y = 0.000953875...), the Birkhoff's normalization has been carried 

numerically up to order thirteen (Deprit et at  1966b); there it was 

found that 

A = 0.01135436, 

B = -0.1551412, 

C = 1.119733. 

The same task has been performed (Deprit et at  1966a) for the system 

Earth-Moon  (y = 0.0121500...) where it was found that 
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A = 0.2313561, 

B = -1.712630, 

C = 0.6771718. 

Both systems of values have been recovered from the definitions in 

Table II valid for any permissible mass ratios. 

Another check is provided by the analytical expansions of the 

two natural families of periodic orbits issued from L, , as they were 

performed by Pedersen (1935). There the author finds that the frequency 

along the family of short period orbits is a series 

2 
<!>..= üj- + Ee +• • • 

in a certain orbital parameter    e.     For the coefficient    E,    he gives 

the expression 

243-2007a^-648ioJ+2908a)J-496u)J 
E = _ - , 

2304^(1-2^) (l-5wp 

If our computation is correct, our coefficient A should be traced in 

Pedersen's coefficient E.  But this is the case, since 

243 - 2007(^ - 648aK + 2908u^ - 496^ = o^3*^) (81-696(^+124^) ; 

hence 

3+4ü^ 

E = " 32^"^ 
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Birkhoffs normalization cannot be carried at order three unless 

the irrationality condition  (A.)  is assumed. But  (A,) means that, 

from the interval 0 < p < IJ.  of permissible mass ratios, besides p-, 

the value 

^3 = 2 (1 " "A ,/n^) = 0-013516016... 

should be excluded. 

Thus A, B, C are functions of the mass ratio on the interval 

0 < y < u,  out of which the critical values u^ and y_ have been 

taken.  The main qualitative characteristics of these functions can be 

read from Figure 1 in which we have plotted respectively A, B, C 

versus  the mass ratio. 

5.  STABILITY 

Knowing the fourth order part 

ÄA = j(AIi + 2BI1
I2 + Cl22> 

of the normalized Hamiltonian, we compute the determinant D which 

decides about the stability at the equilibrium In the theorems of Arnol'd 

and Moser.  Thus we find that 

2 2 
D = -(Aü)2 + 2Ba) a)2 + Co^), 

a quantity which can easily be expressed as a rational  function of the 

product    w.o)-: 
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. 36-5410). (,ü„+644a).1(jü7 

(l-4(i) Cü-) (4-2501.0)2) 

It is easy to see that, In the interval 0 < y < y.. , it possesses one, 

and only one, zero for the mass ratio 

y = 0.01091367... . c 

Thus, stability of the equilibrium at L,  cannot be decided for this 

mass ratio from applying Moser's theorem. 

The qualitative features of the determinant -D as a function of 

the mass ratio y are summarized in the Figure 2. 



-21- 

u 

o 
10 

o 
CO 

o 
CN 

o o o o 
CM 

1 ? 1 1 

01 

0) 

U 
O 

o 
T 

o o o o 
1 

CO 
1 1 

iO 

a 
(U 
a o 
Ou 
a o u 
<u • 

JS a 
•u (0 

•H 
c c 

•H o 
u 

CO rH 
*J •rl 

E 

•H X 
O 

•H T) 
(4-1 0) 
»4-1 N 
<U •H 
O iH 
O (0 

Hi e 
X o 
H c 

00 

tu 



-22- 

A o 

Fig.   2.     Stability condition from the normalized 
Hamiltonian at  order 4. 
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6.  CONCLUSIONS 

In the planar Restricted Problem of Three Bodies, the question 

of stability of the equilateral positions of equilibrium can be answered 

in the affirmative for all values of the mass ratio y in the open 

interval 0 < p < p  except at the critical mass ratios y« = 0.02A293... 

and u3 = 0.013516... and at a third point y = 0.010913... . At these 

three points, Moser's theorem does not apply. 
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